干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
楼主: hualin840518
go

[已解决求助] Developmental Biology, Eighth Edition   [复制链接]

头像被屏蔽

禁止访问

积分
10 
威望
10  
包包
1  
11
发表于 2009-9-25 02:27 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽
头像被屏蔽

禁止访问

积分
10 
威望
10  
包包
1  
12
发表于 2009-9-25 02:27 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽

Rank: 4

积分
1039 
威望
1039  
包包
3260  

小小研究员 优秀会员 博览群书

13
发表于 2009-9-25 07:32 |只看该作者
xiexie

Rank: 3Rank: 3

积分
517 
威望
517  
包包
1299  

金话筒 优秀会员

14
发表于 2009-11-18 22:16 |只看该作者
干细胞之家微信公众号
没有,也想看

Rank: 7Rank: 7Rank: 7

积分
1234 
威望
1234  
包包
1908  

优秀版主

15
发表于 2009-11-19 00:18 |只看该作者
http://8e.devbio.com/
, }- T- J& {! W/ z+ V/ F+ A网上的电子版的不知道你用得着不?

Rank: 3Rank: 3

积分
683 
威望
683  
包包
1343  

优秀会员 热心会员 帅哥研究员 小小研究员

16
发表于 2010-3-4 21:05 |只看该作者
回复 1# hualin840518 . P- g- l: h$ m& m& X% s; T
是这个么?
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 5 + 10 极好资料

总评分: 威望 + 5  包包 + 10   查看全部评分

Rank: 7Rank: 7Rank: 7

积分
1432 
威望
1432  
包包
13671  

金话筒 帅哥研究员 优秀版主

17
发表于 2010-3-5 09:15 |只看该作者
回复 15# hansey 1 ^0 G% a  n7 Y: E! C* ^

' C$ W: A9 ^0 {; W8 L3 M, Y1 ~! c9 f, N$ N$ v
谢谢" i: E# |# f4 L
有没有全书的完整版啊
$ n3 w( C* n0 O$ ?  W6 v* o这只是个书的介绍!

Rank: 2

积分
122 
威望
122  
包包
569  
18
发表于 2010-3-5 14:32 |只看该作者
哦噢!

Rank: 2

积分
265 
威望
265  
包包
543  
19
发表于 2010-3-7 19:18 |只看该作者
可是这个版本(如果是,我就给你下):# ]. X2 `8 s& p4 D( s8 }
Table of Contents( w0 a/ J* I- C  ]
; G4 C: j; j) h6 I& Y+ K; G" E- k
I. Principles of Developmental Biology/ j: F5 f5 j- d( H( U; \0 m

1 V! `8 i- S3 d: o, e1. Developmental biology: The anatomical tradition
; d6 ~! {* d* M% v7 xNew techniques of mathematical modeling of development+ c' L. U! `- X3 Y4 V
2. Life cycles and the evolution of developmental patterns
% R, `0 U& t" m8 V/ G" {Recent advances in planarian regeneration1 j  O2 m( j" n$ `0 q, P$ V
3. Principles of experimental embryology7 ?' \9 W) P3 }* `
4. The genetic core of development
; K# H" v+ t: x4 i5. The paradigm of differential gene expression8 [+ L1 M( ?) T; K$ P2 w$ D9 s
Histone modifications
4 ^( ~( j9 @+ y7 IMicroRNAs
( A9 x, Y3 m$ [% a. |5 k8 DPioneer transcription factors
0 Z0 A1 u# ~: e9 K3 _* aMammalian cloning and methylation patterns9 W, d7 b9 R; `% `* Q
6. Cell–cell communication in development
! Z$ o2 O$ ~" `4 @Stem cell specification and stem cell niches; ~" v  c0 ^0 I1 f
Morphogenetic regulation by cadherins
8 i# d4 P7 o4 ENoncanonical Wnt pathways
7 _6 u: i* C; k8 q7 lDependence receptors and apoptosis9 B7 ^2 m9 M- v& D. H
Community effect and autocrine factors# M1 P3 J) ?& U' V

" b7 B, F- j" E. e0 J$ h# ^II. Early Embryonic Development
. @: U0 L, ?7 Z$ k9 M8 }. q: M1 `1 D2 o
7. Fertilization: Beginning a new organism
) j, z* _. @' x$ T" MCortical granule components+ m* x% s! `1 n6 {) U$ L
New mammalian sperm–egg binding model
/ a9 b1 Z& g5 v4 JMammalian sperm chemotaxis and thermotaxis6 i' q$ q# P% o6 F1 n
Mechanisms of sea urchin sperm chemotaxis; ^1 S7 [9 m+ ~2 O. E
Sea urchin bindin receptor
) |: k8 x$ I2 i/ V& _  nOocyte translation inhibitors and their removal# S( i% n+ i& A) O9 g" W- ?( X; [
New hypotheses of sperm activation1 T, G% H) w; z- g! z. \3 P* `
Mammalian sperm–egg fusion
7 m4 S( I7 c. X% m; K% @* {3 F8. Early development in selected invertebrates
1 Y- s2 i7 _8 a( _Wnt and Nodal in sea urchin axis specification
) x9 ~% V8 ~8 p' t) C6 ACoiling genetics of snail embryos
9 `1 }# e. R& w% ]  r, KFunctions of tunicate yellow crescent
8 r2 ~- k9 J  U8 L8 p; |2 MRoles of FGFs in tunicate development# T- h, n! F+ l7 [
Tunicate heart development
0 ?& ^9 O  b/ L- _9 p- x8 e& [4 ?9. The genetics of axis specification in Drosophila2 I0 b5 V8 r* h5 ^
FGF signals and Drosophila mesoderm formation. f: T: H) ]! J0 A
Transport of Nanos and Bicoid messages to opposite ends of the fly oocyte# ^: w* s! E' o5 {* U1 z0 e$ F
New model for gap protein stabilization
# A+ a4 J7 w- `8 G& |# f% v! x8 u10. Early development and axis formation in amphibians, O5 w4 `- C3 p: S) g/ K: _1 e
New models for organizer formation in Xenopus
7 e( [, A; @, P5 @New model for mesoderm specification in Xenopus7 L+ O8 A3 t/ _4 \3 N& ]9 H
11. The early development of vertebrates: Fish, birds, and mammals
; Z) v( [. O0 @6 ?9 WMaternal effect mutations in zebrafish0 s% {' ^& O" T$ o9 I- B/ ?. G
Neurulation in zebrafish, N$ G5 R3 Q  o8 Y, U
Retinoic acid in anterior–posterior axis specification in chordates) u  W4 a; N' L% \5 a+ d
Ciliary movements and left–right axis specification in vertebrates
' @! K8 H# {1 U2 h8 z0 a1 c, X, b8 ERole of Cerberus in chick head formation
8 l" T% L4 x1 {9 x/ V4 w0 \; _4 eMesoderm specification and migration in chick gastrulae% A; ]) a  m+ Z# H
FGF and cell fate in chick and mammalian epiblasts8 t0 y- N5 ]" E* c' n. l! t* O, H
Induction of pluripotency in mammalian inner cell mass blastomeres
; R( J. O# P9 P- B& t* Y2 o  [Homeotic transformation in mammals due to total Hox paralog knockouts1 h* c; F* W9 F" ^
Controversy over blastocyst polarity in mammals
* U, v3 z6 \0 {Folate receptors and teratogens affecting neurulation8 D: ^$ ~( t$ w' E$ Z" d- S
6 C3 K  g+ |* _1 f/ v7 d; \
III. Later Embryonic Development
7 J1 V0 B) c/ e; X
8 ~5 k9 Q2 M: k$ b- ]12. The emergence of the ectoderm: Central nervous system and epidermis( B  S4 @9 L* f- q3 b# r
Genes specifying neural fate8 s7 a9 B$ K. |, O$ Y
Human-specific genes specifying brain growth' y- ~- i: p( m! [
Progressive myelination of the human brain1 p* ~  F0 A/ w5 |" Z
Neural stem cells
% B/ c; b. j9 Q; m2 x" s& FEye development and blind cave salamanders
0 \' |+ y" R, P( t" rSkin, hair, and pigment stem cells
2 y# k- h% ~, k5 e13. Neural crest cells and axonal specificity
+ r, X" _  W1 o: y, q0 |6 @5 eNeural crest cell specification and migrations' g# E( U1 M' ]7 g8 ^# p
Head vs. trunk neural crest specification  h5 B6 j5 y. z* k3 }  a; R! }
Neural crest-endoderm interactions forming facial structures
6 v. c0 R9 H9 lPlacode specification and separation
1 P& g+ H3 x5 u! {# xTooth development and evolution
  c: v, J% L! s& z7 b" CSemaphorins, Robo, and ephrins in neural patterning
. z( H. s9 P" m9 s" t2 W* _14. Paraxial and intermediate mesoderm
( A* ~7 m* n) X/ aSpecification of paraxial and intermediate mesoderm* n, N# }. H' |& r
Epithelialization of somites
& l* @) r! ^* H) T3 |. TThe syndetome—where tendons arise
* u  G0 C; b) v6 p* Y+ ?3 QFGFs, Notch, and Wnt in somite specification and separation
& }- H& p1 N& [. PThe primaxial and abaxial musculature' q/ x2 X, S5 r2 J) Q
New sources of muscle precursor cells
! [4 q0 t5 O( o7 `# w0 [! OPathways of skeleton formation
  O2 E0 Y: N, y- y1 |Regulating ureteric bud branching
/ E& a) ?+ i6 m3 nWnt and FGF proteins regulating nephron formation5 K6 p' f; ^9 B! x# ]
15. Lateral plate mesoderm and endoderm
6 {3 D- X% ~! SCloaca formation
0 a8 J4 V& S* n/ qHeart cell specification% U% m# K5 ?) y2 D- o3 I
Tbx genes, retinoic acid and heart chamber formation/ J( O7 [# I" D/ s
Heart valve development/ @( d% }& x5 o
Hematopoietic stem cells and their derivatives4 f6 G7 i7 z1 D5 c/ [5 }5 C
Lymphatic development5 F0 A( N! |: m, J/ a" I1 h
Induction of arteries by neurons0 N( K& f7 X; [- N. F
Placenta as source of blood stem cells# U# ^1 U4 L9 _) U6 l5 |2 u
Adult blood stem cell niches; W3 k+ z7 G4 |! ?8 N7 K) ?
Endoderm specificity2 |: B2 k2 q- G( K' s8 j
Pancreas vs. liver development
% r5 ~! _$ a. E/ [3 o3 |& K1 |& OFate mapping pancreatic cells
& s( E/ {& ~  q3 t/ J- T16. Development of the tetrapod limb
$ n9 p+ q  U5 Y$ m+ _& gHox code of limb development
! g$ u* s% F8 R9 _  ]& y# q' e7 oSpecification of the digits by hedgehog proteins and HoxD genes3 i- s! l1 m" d5 w8 P3 d6 t1 v+ ~6 u
Controversy over digit identities in dinosaurs and birds
1 c- a% q1 L  w4 X2 R+ Y  XGetting limbs from fins
" K# X$ {/ Y$ z* _) }; P" G17. Sex determination
2 Z' M2 Z+ n6 L! ^+ w! fTiming and gene expression in mammalian sex determination
% w% D0 {# J7 G- j* n* E- ]1 eBrain sex determination pathways in vertebrates and flies# |, G+ S0 V" m. y6 M  g
Hormone disruptors and sex determination problems! r% ?: {* C# U, E- H
Dosage compensation and sex determination
( s/ D* ?$ x" d) u, ?Temperature-dependent sex determination in turtles
% X* b& J4 m. m/ z$ w  n9 G18. Metamorphosis, regeneration, and aging
6 w: H! R/ [: @9 v2 C% @Molecular mechanisms of amphibian metamorphosis) r4 u  R! r, i4 y
Ecdysone receptors and the response to molting hormone
2 x/ c8 m0 J' T6 e- |) oCompartment formation in the wing imaginal disc8 U; o$ w5 E4 x3 t8 Y
Why can’t we regenerate our limbs?3 P5 N; |% r, j: V9 W* p: W
Neuron- and mesenchyme-dependent stages of limb regeneration
# Q$ K: g& e8 `: h$ nSpecification of limb regions by transcription factors during regeneration, ~( J1 N9 D% H/ m$ x; K
Mitochondrial control of aging
# h/ m) Q) h% H1 V6 b0 W9 g( f4 [Insulin pathway control of aging and possible relation to oxygen radicals
' n/ B3 b( D+ f“Ageless” animals and environmental control of aging' c0 g) ^( W4 ]- u( M7 i2 ^
19. The saga of the germ line5 _2 o/ ^& O1 |$ I  w4 I0 r) m
Genetic specification of germ-line cells in Drosophila and vertebrates
: x# e) e3 ^1 c5 m+ ^Components of the Drosophila germ plasm& u* K6 X( M6 z- G" m
Egg and sperm stem cell niches in Drosophila
+ W" M0 R* x9 x9 S+ f- e% kMigration of primordial germ cells in mammals, chicks, and flies
! ?) V# C+ e) R8 {7 ^+ k! t  @. gDetermination of meiosis and mitosis in C. elegans# e$ b+ s. x$ ]5 u! U% w
Retaining mammalian spermatic stem cells
  J7 W, i2 k+ o! L' ~" @* J* G4 ]IV. Ramifications of Developmental Biology% N" D4 t" s2 i+ L
20. An overview of plant development
5 V& M9 Z' a7 m" P3 \) DGamete formation and pollen tube guidance
0 v, |* b7 q- aMaternal effects and embryo development
' ^$ L& b& h; z6 E$ HRadial and axial patterning8 q; }9 ~3 |+ o/ O: i
New model for auxin specification of polarity
) Z# h1 l  [) C/ s5 X) [; [Roles of microRNAs in plant development
- c: ]0 g, d5 o; a: H# HDorsal–ventral leaf patterning
+ K4 |, p1 u: n5 Z* r; C( k0 ALong-distance RNA transport and flowering
/ _9 U) v! I* bFloral meristem specification
3 z6 U5 C# d- W% {21. Medical implications of developmental biology
1 `7 [( ?* H! c0 Z+ d1 lMechanisms of alcohol teratogenesis
& X1 R6 h7 B$ y1 o( f, h2 [: ?& {Effects of endocrine disruptors on human development
1 J" c! G5 ~! z/ f5 O. A  VNutritional effects of gene methylation and disease susceptibility7 w2 K( |- e1 |- R/ a, [: S% ]
Cancer as a disease of development9 a- z4 Z% u) G9 x0 F! |) v4 e
Cancer stem cell hypothesis2 `# i- a& ]/ S4 G
Developmental approaches to cancer therapy
8 y' s8 Q4 u! l. C* {Stem cell therapeutics( m/ ~. J8 E1 Z
Regenerating human limbs and neurons
$ D) J& y) M* [/ q8 e22. Environmental regulation of animal development
4 ?+ Z0 j0 I' ~* p4 O, ^1 W( p" @Molecular bases for environmental regulation of gene expression
( f, ]9 Q& b. u+ V( P$ f* E9 \! Z• Importance of symbionts in mammalian gut and immune system
' S) S9 V7 \4 N2 tdevelopment
" t2 |* N9 T( [Signaling from fetal mammalian lung to initiate labor
( l0 B, S$ A" W& S& r3 JThe role of nutrition in the development of the dung beetle
. s2 O3 a7 a* P8 cPredator-induced polyphenism and toxicity testing, C# L6 m! C6 {, x4 e
Genetic assimilation of environmentally induced traits
8 U8 s  y! j8 G" x4 @! a$ a23. Developmental mechanisms of evolutionary change
- a+ I5 U9 c4 a9 J' N( YDevelopmental modularity and evolution (stickleback studies)- h) e" `" _) `- s& n* c: d  B
Evolution by heterochrony, heterotopy, heterometry, heterotypy
  c3 B$ V8 s0 _5 g& j2 C7 aBMPs and Darwin’s finches0 T9 \, A: B. g; w# e, Y% a) J
Origin of neural crest cells and the origin of jaws
2 C+ d$ a* q# U: eThe search for the Urbilaterian ancestor

Rank: 7Rank: 7Rank: 7

积分
1432 
威望
1432  
包包
13671  

金话筒 帅哥研究员 优秀版主

20
发表于 2010-3-8 08:24 |只看该作者
回复 19# singtom 3 I9 o6 S! e$ g3 v' [8 x" }, v
5 V+ V  S& p7 M3 _
% n$ n2 r6 u5 X9 c/ E# B
    目录是对的,可是内容还是第六版的,这个电子书是我制作的,上传在论坛,现在还可以下到!
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-7-2 04:10

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.